Johnson-Segalman – Saint-Venant equations for viscoelastic shallow flows in the elastic limit

Sébastien Boyaval 1, 2
2 MATHERIALS - MATHematics for MatERIALS
Inria de Paris, CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique
Abstract : The shallow-water equations of Saint-Venant, often used to model the long-wave dynamics of free-surface flows driven by inertia and hydrostatic pressure, can be generalized to account for the elongational rheology of non-Newtonian fluids too. We consider here the 4 × 4 shallow-water equations generalized to viscoelastic fluids using the Johnson-Segalman model in the elastic limit (i.e. at infinitely-large Deborah number, when source terms vanish). The system of nonlinear first-order equations is hyperbolic when the slip parameter is small ζ ≤ 1/2 (ζ = 1 is the corotational case and ζ = 0 the upper-convected Maxwell case). Moreover, it is naturally endowed with a mathematical entropy (a physical free-energy). When ζ ≤ 1/2 and for any initial data excluding vacuum, we construct here, when elasticity G > 0 is non-zero, the unique solution to the Riemann problem under Lax admissibility conditions. The standard Saint-Venant case is recovered when G → 0 for small data.
Type de document :
Communication dans un congrès
XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications (Hyp2016), Aug 2016, Aachen, Germany. 2017, 〈http://www.hyp2016.de/〉
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01402628
Contributeur : Sébastien Boyaval <>
Soumis le : jeudi 24 novembre 2016 - 22:30:23
Dernière modification le : jeudi 17 mai 2018 - 10:34:02

Fichiers

hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01402628, version 1
  • ARXIV : 1611.08491

Citation

Sébastien Boyaval. Johnson-Segalman – Saint-Venant equations for viscoelastic shallow flows in the elastic limit. XVI International Conference on Hyperbolic Problems Theory, Numerics, Applications (Hyp2016), Aug 2016, Aachen, Germany. 2017, 〈http://www.hyp2016.de/〉. 〈hal-01402628〉

Partager

Métriques

Consultations de la notice

249

Téléchargements de fichiers

54