Discontinuous Galerkin methods for the simulation of the propagation of the elastic wave equations in the frequency domain

Marie Bonnasse-Gahot 1 Henri Calandra 2 Julien Diaz 1, 3 Stéphane Lanteri 4
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
4 NACHOS - Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : In this report, we study two nodal discontinuous Galerkin (DG) methods, the centered flux DG method and the upwind flux DG method, for the resolution of the 2D elastic waves equations in frequency domain, so called Helmholtz equations. We give the formulation of both methods and we compare the obtained results.
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal.inria.fr/hal-01408700
Contributor : Marie Bonnasse-Gahot <>
Submitted on : Tuesday, December 13, 2016 - 11:10:01 AM
Last modification on : Friday, June 7, 2019 - 3:16:15 PM
Long-term archiving on : Tuesday, March 28, 2017 - 12:09:37 AM

File

RR-8989.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01408700, version 2

Citation

Marie Bonnasse-Gahot, Henri Calandra, Julien Diaz, Stéphane Lanteri. Discontinuous Galerkin methods for the simulation of the propagation of the elastic wave equations in the frequency domain. [Research Report] RR-8989, INRIA Bordeaux; INRIA Sophia Antipolis - Méditerranée. 2015, pp.56. ⟨hal-01408700v2⟩

Share

Metrics

Record views

635

Files downloads

481