Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation

Hélène Barucq 1 Théophile Chaumont-Frelet 1, 2 Christian Gout 2
1 Magique 3D - Advanced 3D Numerical Modeling in Geophysics
LMAP - Laboratoire de Mathématiques et de leurs Applications [Pau], Inria Bordeaux - Sud-Ouest
Abstract : The numerical simulation of time-harmonic waves in heterogeneous media is a tricky task which consists in reproducing oscillations. These oscillations become stronger as the frequency increases, and high-order finite element methods have demonstrated their capability to reproduce the oscilla-tory behavior. However, they keep coping with limitations in capturing fine scale heterogeneities. We propose a new approach which can be applied in highly heterogeneous propagation media. It consists in constructing an approximate medium in which we can perform computations for a large variety of frequencies. The construction of the approximate medium can be understood as applying a quadrature formula locally. We establish estimates which generalize existing estimates formerly obtained for homogeneous Helmholtz problems. We then provide numerical results which illustrate the good level of accuracy of our solution methodology.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2017, 86 (307), pp.2129 - 2157. 〈10.1090/mcom/3165〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01408934
Contributeur : Théophile Chaumont-Frelet <>
Soumis le : lundi 12 février 2018 - 13:46:31
Dernière modification le : mardi 5 juin 2018 - 10:14:09
Document(s) archivé(s) le : lundi 7 mai 2018 - 19:56:39

Fichier

preprint_mcom.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Hélène Barucq, Théophile Chaumont-Frelet, Christian Gout. Stability analysis of heterogeneous Helmholtz problems and finite element solution based on propagation media approximation. Mathematics of Computation, American Mathematical Society, 2017, 86 (307), pp.2129 - 2157. 〈10.1090/mcom/3165〉. 〈hal-01408934〉

Partager

Métriques

Consultations de la notice

341

Téléchargements de fichiers

64