Growing Neural Gas – A Parallel Approach

Abstract : The paper deals with the high dimensional data clustering problem. One possible way to cluster this kind of data is based on Artificial Neural Networks (ANN) such as SOM or Growing Neural Gas (GNG). The learning phase of the ANN, which is time-consuming especially for large high-dimensional datasets, is the main drawback of this approach to data clustering. The parallel modification, Growing Neural Gas, and its implementation on the HPC cluster is presented in the paper. Some experimental results are also presented.
Type de document :
Communication dans un congrès
Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.408-419, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_38〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01496086
Contributeur : Hal Ifip <>
Soumis le : lundi 27 mars 2017 - 11:01:51
Dernière modification le : mardi 28 mars 2017 - 01:07:11
Document(s) archivé(s) le : mercredi 28 juin 2017 - 12:56:48

Fichier

978-3-642-40925-7_38_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Lukáš Vojáček, Jiří Dvorský. Growing Neural Gas – A Parallel Approach. Khalid Saeed; Rituparna Chaki; Agostino Cortesi; Sławomir Wierzchoń. 12th International Conference on Information Systems and Industrial Management (CISIM), Sep 2013, Krakow, Poland. Springer, Lecture Notes in Computer Science, LNCS-8104, pp.408-419, 2013, Computer Information Systems and Industrial Management. 〈10.1007/978-3-642-40925-7_38〉. 〈hal-01496086〉

Partager

Métriques

Consultations de la notice

109

Téléchargements de fichiers

55