On the variational formulation of some stationary second order mean field games systems

Abstract : We consider the variational approach to prove the existence of solutions of second order stationary Mean Field Games on a bounded domain $\Omega\subseteq \mathbb{R}^{d}$, with Neumann boundary conditions, and with and without density constraints. We consider Hamiltonians which growth as $|\cdot|^{q'}$, where $q'=q/(q-1)$ and $q>d$. Despite this restriction, our approach allows us to prove the existence of solutions in the case of rather general coupling terms. When density constraints are taken into account, our results improve those in \cite{MesSil}. Furthermore, our approach can be used to obtain solutions of systems with multiple populations.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01502723
Contributeur : Alpár Richárd Mészáros <>
Soumis le : lundi 17 avril 2017 - 02:31:28
Dernière modification le : vendredi 27 avril 2018 - 14:34:01
Document(s) archivé(s) le : mardi 18 juillet 2017 - 12:18:19

Fichiers

alpar_francisco_FINAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01502723, version 3
  • ARXIV : 1704.02125

Collections

Citation

Alpár Richárd Mészáros, Francisco J. Silva. On the variational formulation of some stationary second order mean field games systems. 2017. 〈hal-01502723v3〉

Partager

Métriques

Consultations de la notice

246

Téléchargements de fichiers

48