Convexity-preserving rigid motions of 2D digital objects

Abstract : Rigid motions on R^2 are isometric and thus preserve the geometry and topology of objects. However, this important property is generally lost when considering digital objects defined on Z^2 , due to the digitization process from R^2 to Z^2. In this article, we focus on the convexity property of digital objects, and propose an approach for rigid motions of digital objects which preserves this convexity. The method is extended to non-convex objects, based on the concavity tree representation.
Type de document :
Communication dans un congrès
Discrete Geometry for Computer Imagery (DGCI), 2017, Vienna, Austria. 10502, pp.69-81, 2017, Lecture Notes in Computer Science. 〈10.1007/978-3-319-66272-5_7〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01565028
Contributeur : Phuc Ngo <>
Soumis le : mercredi 19 juillet 2017 - 17:47:31
Dernière modification le : jeudi 19 juillet 2018 - 15:34:01

Fichier

Paper15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Phuc Ngo, Yukiko Kenmochi, Isabelle Debled-Rennesson, Nicolas Passat. Convexity-preserving rigid motions of 2D digital objects. Discrete Geometry for Computer Imagery (DGCI), 2017, Vienna, Austria. 10502, pp.69-81, 2017, Lecture Notes in Computer Science. 〈10.1007/978-3-319-66272-5_7〉. 〈hal-01565028〉

Partager

Métriques

Consultations de la notice

396

Téléchargements de fichiers

55