Convexity-preserving rigid motions of 2D digital objects

Abstract : Rigid motions on R 2 are isometric and thus preserve the geometry and topology of objects. However, this important property is generally lost when considering digital objects defined on Z 2 , due to the digitization process from R 2 to Z 2. In this article, we focus on the convex-ity property of digital objects, and propose an approach for rigid motions of digital objects which preserves this convexity. The method is extended to non-convex objects, based on the concavity tree representation.
Type de document :
Communication dans un congrès
DGCI, Sep 2017, Vienna, Austria. 2017, 〈10.1007/978-3-319-66272-5_7〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01565028
Contributeur : Phuc Ngo <>
Soumis le : mercredi 19 juillet 2017 - 17:47:31
Dernière modification le : jeudi 11 janvier 2018 - 06:25:24

Fichier

Paper15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Phuc Ngo, Yukiko Kenmochi, Isabelle Debled-Rennesson, Nicolas Passat. Convexity-preserving rigid motions of 2D digital objects. DGCI, Sep 2017, Vienna, Austria. 2017, 〈10.1007/978-3-319-66272-5_7〉. 〈hal-01565028〉

Partager

Métriques

Consultations de la notice

155

Téléchargements de fichiers

20