Analysis of the Riemann Problem for a shallow water model with two velocities

Abstract : Some shallow water type models describing the vertical profile of the horizontal velocity with several degrees of freedom have been recently proposed. The question addressed in the current work is the hyperbolicity of a shallow water model with two velocities. The model is written in a nonconservative form and the analysis of its eigenstructure shows the possibility that two eigenvalues coincide. A definition of the nonconservative product is given which enables us to analyse the resonance and coalescence of waves. Eventually, we prove the well-posedness of the two dimensional Riemann problem with initial condition constant by half-plane.
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01618722
Contributeur : Martin Parisot <>
Soumis le : jeudi 19 octobre 2017 - 14:51:11
Dernière modification le : mardi 22 mai 2018 - 20:40:03
Document(s) archivé(s) le : samedi 20 janvier 2018 - 13:40:20

Fichier

Multicouche_V1.0.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01618722, version 2

Citation

Nina Aguillon, Emmanuel Audusse, Edwige Godlewski, Martin Parisot. Analysis of the Riemann Problem for a shallow water model with two velocities. 2017. 〈hal-01618722v2〉

Partager

Métriques

Consultations de la notice

476

Téléchargements de fichiers

137