Skip to Main content Skip to Navigation
Reports

Non Rigid Registration of Diffusion Tensor Images

Olivier Faugeras 1 Christophe Lenglet 2, * Théodore Papadopoulo 1 Rachid Deriche 1
* Corresponding author
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
Abstract : We propose a novel variational framework for the dense non-rigid registration of Diffusion Tensor Images (DTI). Our approach relies on the differential geometrical properties of the Riemannian manifold of multivariate normal distributions endowed with the metric derived from the Fisher information matrix. The availability of closed form expressions for the geodesics and the Christoffel symbols allows us to define statistical quantities and to perform the parallel transport of tangent vectors in this space. We propose a matching energy that aims to minimize the difference in the local statistical content (means and covariance matrices) of two DT images through a gradient descent procedure. The result of the algorithm is a dense vector field that can be used to wrap the source image into the target image. This article is essentially a mathematical study of the registration problem. Some numerical experiments are provided as a proof of concept.
Complete list of metadata

Cited literature [36 references]  Display  Hide  Download

https://hal.inria.fr/inria-00125876
Contributor : Rapport de Recherche Inria <>
Submitted on : Tuesday, January 23, 2007 - 11:48:50 AM
Last modification on : Tuesday, September 22, 2020 - 3:52:38 AM
Long-term archiving on: : Tuesday, September 21, 2010 - 11:44:34 AM

Files

RR-6104.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00125876, version 2

Collections

Citation

Olivier Faugeras, Christophe Lenglet, Théodore Papadopoulo, Rachid Deriche. Non Rigid Registration of Diffusion Tensor Images. [Research Report] RR-6104, INRIA. 2007, pp.39. ⟨inria-00125876v2⟩

Share

Metrics

Record views

543

Files downloads

293