Second-order Analysis for Optimal Control Problems with Pure and Mixed State Constraints

Frédéric Bonnans 1, 2 Audrey Hermant 1, 2
1 Commands - Control, Optimization, Models, Methods and Applications for Nonlinear Dynamical Systems
CMAP - Centre de Mathématiques Appliquées - Ecole Polytechnique, Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées
Abstract : This paper deals with the optimal control problem of an ordinary differential equation with several pure state constraints, of arbitrary orders, as well as mixed control-state constraints. We assume (i) the Hamiltonian to be strongly convex and the mixed constraints to be convex w.r.t. the control variable, and (ii) a linear independence condition of the active constraints at their respective order to hold. We give a complete analysis of the smoothness and junction conditions of the control and of the constraints multipliers. This allow us to obtain, when there are finitely many nontangential junction points, a theory of no-gap second-order optimality conditions and a characterization of the well-posedness of the shooting algorithm. These results generalize those obtained in the case of a scalar-valued state constraint and a scalar-valued control.
Type de document :
[Research Report] RR-6199, INRIA. 2007
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger
Contributeur : Rapport de Recherche Inria <>
Soumis le : jeudi 24 mai 2007 - 10:42:15
Dernière modification le : mercredi 14 novembre 2018 - 15:22:02
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:45:11


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00148946, version 2


Frédéric Bonnans, Audrey Hermant. Second-order Analysis for Optimal Control Problems with Pure and Mixed State Constraints. [Research Report] RR-6199, INRIA. 2007. 〈inria-00148946v2〉



Consultations de la notice


Téléchargements de fichiers