Two Level Correction Algorithms for Model Problems

Jichao Zhao 1 Jean-Antoine Desideri 1 Badr El Majd 1
1 OPALE - Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE
CRISAM - Inria Sophia Antipolis - Méditerranée , JAD - Laboratoire Jean Alexandre Dieudonné : UMR6621
Abstract : In this report, we experiment a variant of the two-level ideal algorithm for parametric shape optimization that was proposed in [5]. In the linear case, the method, referred to as the Z' method, employs a permutation operator to rearrange the eigenstructure in such a way that the new high-frequency modes are associated with large eigenvalues. As a result, the classical steepest-descent iteration can be viewed as a Jacobi-type smoother, and standard multilevel stragegies be applied. An alternate method is also tested based on odd-even decoupling (L' method). For a linear model problem, both new methods are found efficient and superior to the original formulation, but the Z' method is more robust. Similar numerical results are obtained for a nonlinear model problem by considering the eigensystem of the Jacobian matrix.
Type de document :
Rapport
[Research Report] RR-6246, INRIA. 2007, pp.28
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00161891
Contributeur : Rapport de Recherche Inria <>
Soumis le : lundi 16 juillet 2007 - 10:02:37
Dernière modification le : jeudi 3 mai 2018 - 13:32:55
Document(s) archivé(s) le : mardi 21 septembre 2010 - 13:21:04

Fichiers

RR-6246.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00161891, version 2

Citation

Jichao Zhao, Jean-Antoine Desideri, Badr El Majd. Two Level Correction Algorithms for Model Problems. [Research Report] RR-6246, INRIA. 2007, pp.28. 〈inria-00161891v2〉

Partager

Métriques

Consultations de la notice

374

Téléchargements de fichiers

139