On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions.

Steve Oudot 1, *
* Auteur correspondant
Abstract : It is a well-known fact that, under mild sampling conditions, the restricted Delaunay triangulation provides good topological approximations of 1- and 2-manifolds. We show that this is not the case for higher-dimensional manifolds, even under stronger sampling conditions. Specifically, it is not true that, for any compact closed submanifold M of R^n, and any sufficiently dense uniform sampling L of M, the Delaunay triangulation of L restricted to M is homeomorphic to M, or even homotopy equivalent to it. Besides, it is not true either that, for any sufficiently dense set W of witnesses, the witness complex of L relative to M contains or is contained in the restricted Delaunay triangulation of L.
Type de document :
Pré-publication, Document de travail
2006
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00260861
Contributeur : Steve Oudot <>
Soumis le : dimanche 9 mars 2008 - 13:19:21
Dernière modification le : dimanche 9 mars 2008 - 14:47:51
Document(s) archivé(s) le : mardi 21 septembre 2010 - 15:48:45

Fichiers

restr_Del_in_higher_dims.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00260861, version 2
  • ARXIV : 0803.1296

Citation

Steve Oudot. On the Topology of the Restricted Delaunay Triangulation and Witness Complex in Higher Dimensions.. 2006. 〈inria-00260861v2〉

Partager

Métriques

Consultations de la notice

60

Téléchargements de fichiers

65