Skip to Main content Skip to Navigation
Conference papers

Compact Video Description for Copy Detection with Precise Temporal Alignment

Matthijs Douze 1, 2 Hervé Jégou 3 Cordelia Schmid 1, 2 Patrick Pérez 4
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK [2007-2015] - Laboratoire Jean Kuntzmann [2007-2015], Grenoble INP [2007-2019] - Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019]
3 TEXMEX - Multimedia content-based indexing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : This paper introduces a very compact yet discriminative video description, which allows example-based search in a large number of frames corresponding to thousands of hours of video. Our description extracts one descriptor per indexed video frame by aggregating a set of local descriptors. These frame descriptors are encoded using a time-aware hierarchical indexing structure. A modified temporal Hough voting scheme is used to rank the retrieved database videos and estimate segments in them that match the query. If we use a dense temporal description of the videos, matched video segments are localized with excellent precision. Experimental results on the Trecvid 2008 copy detection task and a set of 38000 videos from YouTube show that our method offers an excellent trade-off between search accuracy, efficiency and memory usage.
Document type :
Conference papers
Complete list of metadatas

https://hal.inria.fr/inria-00548641
Contributor : Hervé Jégou <>
Submitted on : Tuesday, March 22, 2011 - 2:40:08 PM
Last modification on : Friday, July 17, 2020 - 11:38:58 AM
Document(s) archivé(s) le : Thursday, March 30, 2017 - 8:37:38 AM

File

paper.pdf
Files produced by the author(s)

Identifiers

Citation

Matthijs Douze, Hervé Jégou, Cordelia Schmid, Patrick Pérez. Compact Video Description for Copy Detection with Precise Temporal Alignment. European Conference on Computer Vision (ECCV '10), Sep 2010, Heraklion, Greece. pp.522--535, ⟨10.1007/978-3-642-15549-9_38⟩. ⟨inria-00548641v2⟩

Share

Metrics

Record views

31

Files downloads

45