Tight conditions for consistent variable selection in high dimensional nonparametric regression

Laëtitia Comminges 1, 2 Arnak S. Dalalyan 1, 2
2 IMAGINE [Marne-la-Vallée]
LIGM - Laboratoire d'Informatique Gaspard-Monge, CSTB - Centre Scientifique et Technique du Bâtiment, ENPC - École des Ponts ParisTech
Abstract : We address the issue of variable selection in the regression model with very high ambient dimension, \textit{i.e.}, when the number of covariates is very large. The main focus is on the situation where the number of relevant covariates, called intrinsic dimension, is much smaller than the ambient dimension. Without assuming any parametric form of the underlying regression function, we get tight conditions making it possible to consistently estimate the set of relevant variables. These conditions relate the intrinsic dimension to the ambient dimension and to the sample size. The procedure that is provably consistent under these tight conditions is simple and is based on comparing the empirical Fourier coefficients with an appropriately chosen threshold value.
Type de document :
Communication dans un congrès
COLT - 24th Conference on Learning Theory - 2011, Jul 2011, Budapest, Hungary. 19 p., 2011
Liste complète des métadonnées

https://hal.inria.fr/inria-00566721
Contributeur : Arnak Dalalyan <>
Soumis le : jeudi 17 février 2011 - 09:33:50
Dernière modification le : jeudi 5 juillet 2018 - 14:23:42

Fichiers

Laetitia_COLT_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00566721, version 2
  • ARXIV : 1102.3616

Citation

Laëtitia Comminges, Arnak S. Dalalyan. Tight conditions for consistent variable selection in high dimensional nonparametric regression. COLT - 24th Conference on Learning Theory - 2011, Jul 2011, Budapest, Hungary. 19 p., 2011. 〈inria-00566721v2〉

Partager

Métriques

Consultations de la notice

287

Téléchargements de fichiers

237