Practical coexistence in the chemostat with arbitrarily close growth functions

Alain Rapaport 1 Denis Dochain 2 Jérôme Harmand 3, 1
1 MERE - Water Resource Modeling
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique : UMR0729
Abstract : We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily closed. The transient behavior is analyzed in terms of slow-fast dynamics. We prove that non-dominant species can first increase before decreasing, depending on their initial proportions.
Document type :
Journal articles
Complete list of metadatas
Contributor : Coordination Episciences Iam <>
Submitted on : Tuesday, February 23, 2016 - 2:02:27 PM
Last modification on : Thursday, July 4, 2019 - 3:56:03 PM
Long-term archiving on : Tuesday, May 24, 2016 - 1:20:10 PM


Publisher files allowed on an open archive


  • HAL Id : hal-00999808, version 2



Alain Rapaport, Denis Dochain, Jérôme Harmand. Practical coexistence in the chemostat with arbitrarily close growth functions. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2008, 9, pp.231-243. ⟨hal-00999808v2⟩



Record views


Files downloads