Practical coexistence in the chemostat with arbitrarily close growth functions

Alain Rapaport 1 Denis Dochain 2 Jérôme Harmand 3, 1
1 MERE - Water Resource Modeling
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique : UMR0729
Abstract : We show that the coexistence of different species in competition for a common resource may be substantially long when their growth functions are arbitrarily closed. The transient behavior is analyzed in terms of slow-fast dynamics. We prove that non-dominant species can first increase before decreasing, depending on their initial proportions.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/hal-00999808
Contributor : Coordination Episciences Iam <>
Submitted on : Tuesday, February 23, 2016 - 2:02:27 PM
Last modification on : Thursday, July 4, 2019 - 3:56:03 PM
Long-term archiving on : Tuesday, May 24, 2016 - 1:20:10 PM

File

arima00914.pdf
Publisher files allowed on an open archive

Identifiers

  • HAL Id : hal-00999808, version 2

Collections

Citation

Alain Rapaport, Denis Dochain, Jérôme Harmand. Practical coexistence in the chemostat with arbitrarily close growth functions. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées, INRIA, 2008, 9, pp.231-243. ⟨hal-00999808v2⟩

Share

Metrics

Record views

500

Files downloads

502