Dynamical modelling and optimal control of landfills

Abstract : We propose a simple model of landfill and study a minimal time control problem where the re-circulation leachate is the manipulated variable. We propose a scheme to construct the optimal strategy by dividing the state space into three subsets $\mathcal{E}_0$, $\mathcal{Z}_{1}$ and the complementary. On $\mathcal{E}_0$ and $\mathcal{Z}_{1}$, the optimal control is constant until reaching target, while it can exhibit a singular arc outside these two subsets. Moreover, the singular arc could have a {\em barrier}. In this case, we prove the existence of a switching curve that passes through a point of {\em prior saturation} under the assumption that the set $\mathcal{E}_0$ intersects the singular arc. Numerical computations allow then to determine the switching curve and depict the optimal synthesis.
Type de document :
Article dans une revue
Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2016, 26 (5), pp.901-929. 〈http://www.worldscientific.com/doi/10.1142/S0218202516500214〉. 〈10.1142/S0218202516500214〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01087946
Contributeur : Alain Rapaport <>
Soumis le : mardi 17 novembre 2015 - 21:22:11
Dernière modification le : vendredi 12 janvier 2018 - 01:56:23

Identifiants

Citation

Alain Rapaport, Térence Bayen, Matthieu Sebbah, Andres Donoso-Bravo, Alfredo Torrico. Dynamical modelling and optimal control of landfills. Mathematical Models and Methods in Applied Sciences, World Scientific Publishing, 2016, 26 (5), pp.901-929. 〈http://www.worldscientific.com/doi/10.1142/S0218202516500214〉. 〈10.1142/S0218202516500214〉. 〈hal-01087946v2〉

Partager

Métriques

Consultations de la notice

540