A combined finite volume - finite element scheme for a dispersive shallow water system

Abstract : We propose a variational framework for the resolution of a non-hydrostatic Saint-Venant type model with bottom topography. This model is a shallow water type approximation of the incompressible Euler system with free surface and slightly differs from the Green-Nagdhi model, see [13] for more details about the model derivation. The numerical approximation relies on a prediction-correction type scheme initially introduced by Chorin-Temam [17] to treat the incompressibility in the Navier-Stokes equations. The hyperbolic part of the system is approximated using a kinetic finite volume solver and the correction step implies to solve a mixed problem where the velocity and the pressure are defined in compatible finite element spaces. The resolution of the incompressibility constraint leads to an elliptic problem involving the non-hydrostatic part of the pressure. This step uses a variational formulation of a shallow water version of the incompressibility condition. Several numerical experiments are performed to confirm the relevance of our approach.
Type de document :
Article dans une revue
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2016, 11 (1), pp.1-27
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01160718
Contributeur : Jacques Sainte-Marie <>
Soumis le : mardi 30 juin 2015 - 11:45:38
Dernière modification le : mercredi 5 décembre 2018 - 01:25:48
Document(s) archivé(s) le : mardi 25 avril 2017 - 20:12:28

Fichiers

formVarA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01160718, version 3
  • ARXIV : 1506.02881

Citation

Nora Aissiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2016, 11 (1), pp.1-27. 〈hal-01160718v3〉

Partager

Métriques

Consultations de la notice

782

Téléchargements de fichiers

273