Conformal mapping for cavity inverse problem: an explicit reconstruction formula - Archive ouverte HAL Access content directly
Journal Articles Applicable Analysis Year : 2016

Conformal mapping for cavity inverse problem: an explicit reconstruction formula

(1, 2) , (1, 2)
1
2

Abstract

In this paper, we address a classical case of the Calder\'on (or conductivity) inverse problem in dimension two. We aim to recover the location and the shape of a single cavity $\omega$ (with boundary $\gamma$) contained in a domain $\Omega$ (with boundary $\Gamma$) from the knowledge of the Dirichlet-to-Neumann (DtN) map $\Lambda_\gamma: f \longmapsto \partial_n u^f|_{\Gamma}$, where $u^f$ is harmonic in $\Omega\setminus\overline{\omega}$, $u^f|_{\Gamma}=f$ and $u^f|_{\gamma}=c^f$, $c^f$ being the constant such that $\int_{\gamma}\partial_n u^f\,{\rm d}s=0$. We obtain an explicit formula for the complex coefficients $a_m$ arising in the expression of the Riemann map $z\longmapsto a_1 z + a_0 + \sum_{m\leqslant -1} a_m z^{m}$ that conformally maps the exterior of the unit disk onto the exterior of $\omega$. This formula is derived by using two ingredients: a new factorization result of the DtN map and the so-called generalized P\'olia-Szeg\"o tensors (GPST) of the cavity. As a byproduct of our analysis, we also prove the analytic dependence of the coefficients $a_m$ with respect to the DtN. Numerical results are provided to illustrate the efficiency and simplicity of the method.
Fichier principal
Vignette du fichier
reconstruction_REVISED_HAL.pdf (1018.52 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01196111 , version 1 (09-09-2015)
hal-01196111 , version 2 (24-11-2015)
hal-01196111 , version 3 (24-06-2016)
hal-01196111 , version 4 (24-06-2016)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Alexandre Munnier, Karim Ramdani. Conformal mapping for cavity inverse problem: an explicit reconstruction formula. Applicable Analysis, 2016, 96 (1), pp.108-129. ⟨10.1080/00036811.2016.1208816⟩. ⟨hal-01196111v4⟩
284 View
420 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More