Skip to Main content Skip to Navigation
Journal articles

Kernel estimation of extreme regression risk measures

Jonathan El Methni 1 Laurent Gardes 2 Stéphane Girard 3
3 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology, LJK - Laboratoire Jean Kuntzmann
Abstract : The Regression Conditional Tail Moment (RCTM) is the risk measure defined as the moment of order $b ≥ 0$ of a loss distribution above the upper α-quantile where $α ∈ (0, 1$) and when a covariate information is available. The purpose of this work is first to establish the asymptotic properties of the RCTM in case of extreme losses, i.e when $α → 0$ is no longer fixed, under general extreme-value conditions on their distribution tail. In particular, no assumption is made on the sign of the associated extreme-value index. Second, the asymptotic normality of a kernel estimator of the RCTM is established, which allows to derive similar results for estimators of related risk measures such as the Regression Conditional Tail Expectation/Variance/Skewness. When the distribution tail is upper bounded, an application to frontier estimation is also proposed. The results are illustrated both on simulated data and on a real dataset in the field of nuclear reactors reliability.
Document type :
Journal articles
Complete list of metadata

Cited literature [49 references]  Display  Hide  Download
Contributor : Stephane Girard Connect in order to contact the contributor
Submitted on : Tuesday, November 14, 2017 - 9:20:14 AM
Last modification on : Thursday, January 20, 2022 - 4:15:20 PM
Long-term archiving on: : Thursday, February 15, 2018 - 1:17:46 PM


Files produced by the author(s)



Jonathan El Methni, Laurent Gardes, Stéphane Girard. Kernel estimation of extreme regression risk measures. Electronic Journal of Statistics , Shaker Heights, OH : Institute of Mathematical Statistics, 2018, 12 (1), pp.359--398. ⟨10.1214/18-EJS1392⟩. ⟨hal-01393519v3⟩



Les métriques sont temporairement indisponibles