Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions

Abstract : We study extensions of piecewise polynomial data prescribed on faces and possibly in elements of a patch of simplices sharing a vertex. In the H1 setting, we look for functions whose jumps across the faces are prescribed, whereas in the H(div) setting, the normal component jumps and the piecewise divergence are prescribed. We show stability in the sense that the minimizers over piecewise polynomial spaces of the same degree as the data are subordinate in the broken energy norm to the minimizers over the whole broken H1 and H(div) spaces. Our proofs are constructive and yield constants independent of the polynomial degree. One particular application of these results is in a posteriori error analysis, where the present results justify polynomial-degree-robust efficiency of potential and flux reconstructions.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.inria.fr/hal-01422204
Contributeur : Martin Vohralik <>
Soumis le : lundi 20 août 2018 - 21:29:44
Dernière modification le : mercredi 5 septembre 2018 - 10:34:51

Fichier

robust_rev.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01422204, version 2

Collections

Citation

Alexandre Ern, Martin Vohralík. Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. 2018. 〈hal-01422204v2〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

15