Scaffolding a Skeleton

Abstract : The goal of this paper is to construct a quadrilateral mesh around a one-dimensional skeleton that is as coarse as possible, the " scaffold ". A skeleton allows one to quickly describe a shape, in particular a complex shape of high genus. The constructed scaffold is then a potential support for the surface representation: it provides a topology for the mesh, a domain for parametric representation (a quad mesh is ideal for tensor product splines) or, together with the skeleton, a grid support on which to project an implicit surface that is naturally defined by the skeleton through convolution. We provide a constructive algorithm to derive a quad-mesh scaffold with topologically regular cross-sections (which are also quads), and no T-junctions. We show that this construction is optimal in the sense that no coarser quad mesh with topologically regular cross-sections may be constructed. Finally, we apply an existing rotation minimization algorithm along the skeleton branches, which produces a mesh with a natural edge flow along the shape.
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger
Contributeur : Evelyne Hubert <>
Soumis le : dimanche 18 juin 2017 - 09:51:03
Dernière modification le : mardi 17 avril 2018 - 09:04:47
Document(s) archivé(s) le : vendredi 15 décembre 2017 - 17:08:41


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01532765, version 2


Athina Panotopoulou, Elissa Ross, Kathrin Welker, Evelyne Hubert, Geraldine Morin. Scaffolding a Skeleton. 2017. 〈hal-01532765v2〉



Consultations de la notice


Téléchargements de fichiers