Skip to Main content Skip to Navigation
New interface
Journal articles

Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients

Patrick Ciarlet 1 Léandre Giret 2, 1 Erell Jamelot 3 Félix D. Kpadonou 4, 5 
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
2 LLPR - Laboratoire de Logiciels pour la Physique des Réacteurs
SERMA - Service des Réacteurs et de Mathématiques Appliquées : DEN/DM2S/SERMA
Abstract : We study first the convergence of the finite element approximation of the mixed diffusion equations with a source term, in the case where the solution is of low regularity. Such a situation commonly arises in the presence of three or more intersecting material components with different characteristics. Then we focus on the approximation of the associated eigenvalue problem. We prove spectral correctness for this problem in the mixed setting. These studies are carried out without, and then with a domain decomposition method. The domain decomposition method can be non-matching in the sense that the traces of the finite element spaces may not fit at the interface between subdomains. Finally, numerical experiments illustrate the accuracy of the method.
Document type :
Journal articles
Complete list of metadata

Cited literature [31 references]  Display  Hide  Download

https://hal.inria.fr/hal-01566179
Contributor : Patrick Ciarlet Connect in order to contact the contributor
Submitted on : Saturday, December 9, 2017 - 7:27:00 PM
Last modification on : Tuesday, October 25, 2022 - 4:25:18 PM

File

CGJK17.pdf
Files produced by the author(s)

Identifiers

Citation

Patrick Ciarlet, Léandre Giret, Erell Jamelot, Félix D. Kpadonou. Numerical analysis of the mixed finite element method for the neutron diffusion eigenproblem with heterogeneous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, 52 (5), pp.2003-2035. ⟨10.1051/m2an/2018011⟩. ⟨hal-01566179v2⟩

Share

Metrics

Record views

644

Files downloads

610